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We present a constructive approach to the functional quantization problem of stochastic processes,
with an emphasis on Gaussian processes. The approach is constructive, since we reduce the
infinite-dimensional functional quantization problem to a finite-dimensional quantization problem
that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization
error and can be used to quantize the path space for Gaussian processes and also, for example,
Lévy processes.

1. Introduction

We consider a separable Banach space (E, ‖ · ‖) and a Borel random variable X: (Ω,F,�) →
(E,B(E)) with finite rth moment �‖X‖r for some r ∈ [1,∞).

For a given natural number n ∈ �, the quantization problem consists in finding a set
α ⊂ E that minimizes

er(X, (E, ‖·‖), α) = er(X,E, α) :=
(
� min

a∈α
‖X − a‖r

)1/r
(1.1)

over all subsets α ⊂ Ewith card (α) ≤ n. Such sets α are called n-codebooks or n-quantizers. The
corresponding infimum

en,r(X, (E, ‖·‖)) = en,r(X,E) := inf
α⊂E,card(α)≤n

er(X,E, α) (1.2)
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is called the nth Lr-quantization error of X in E, and any n-quantizer α fulfilling

er(X,E, α) = en,r(X,E) (1.3)

is called r-optimal n-quantizer. For a given n-quantizer α one defines the nearest neighbor
projection

πα : E −→ α, x −→
∑
a∈α
aχCa(α)(x), (1.4)

where the Voronoi partition {Ca(α), a ∈ α} is defined as a Borel partition of E satisfying

Ca(α) ⊂
{
x ∈ � : ‖x − a‖ = min

b∈α
‖x − b‖

}
. (1.5)

The random variable πα(X) is called α-quantization of X. One can easily verify that πα(X)
is the best quantization of X in α ⊂ E, which means that for every random variable Y with
values in αwe have

er(X,E, α) =
(
�‖X − πα(X)‖r)1/r ≤ (

�‖X − Y‖r)1/r . (1.6)

Applications of quantization go back to the 1940s, where quantizationwas used for the
finite-dimensional setting E = �

d , called optimal vector quantization, in signal compression
and information processing (see, e.g., [1, 2]). Since the beginning of the 21st century,
quantization has been applied for example in finance, especially for pricing path-dependent
and American style options. Here, vector quantization [3] as well as functional quantization
[4, 5] is useful. The terminology functional quantization is used when the Banach space E is a
function space, such as E = (Lp[0, 1], ‖ · ‖p) or E = C([0, 1], ‖ · ‖∞). In this case, the realizations
of X can be seen as the paths of a stochastic process.

A question of theoretical as well as practical interest is the issue of high-resolution
quantization which concerns the behavior of en,r(X,E) when n tends to infinity. By
separability of (E, ‖ · ‖), we can choose a dense subset {ci, i ∈ �} and we can deduce in
view of

0 ≤ lim
n→∞

� min
1≤i≤n

‖X − ci‖r = � lim
n→∞

min
1≤i≤n

‖X − ci‖r = 0 (1.7)

that en,r(X,E) tends to zero as n tends to infinity.
A natural question is then if it is possible to describe the asymptotic behavior of

en,r(X,E). It will be convenient to write an ∼ bn for sequences (an)n∈� and (bn)n∈� if
an/bn

n→∞−−−−−→ 1, an � bn if lim supn→∞an/bn ≤ 1 and an ≈ bn if 0 < lim infn→∞an/bn ≤
lim supn→∞an/bn <∞.

In the finite-dimensional setting (�d , ‖ · ‖) this behavior can satisfactory be described
by the Zador Theorem (see [6]) for nonsingular distributions �X. In the infinite dimensional
case, no such global result holds so far, without some additional restrictions. To describe one
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of the most famous results in this field, we call a measurable function ρ : (s,∞) → (0,∞) for
an s ≥ 0 regularly varying at infinitywith index b ∈ � if for every c > 0

lim
x→∞

ρ(cx)
ρ(x)

= cb. (1.8)

Theorem 1.1 (see [7]). Let X be a centered Gaussian random variable with values in the separable
Hilbert space (H, 〈·, ·〉) and λn, n ∈ � the decreasing eigenvalues of the covariance operator CX :H →
H , u → �〈u,X〉X (which is a symmetric trace class operator). Assume that λn ∼ ρ(n) for some
regularly varying function ρ with index −b < −1. Then, the asymptotics of the quantization error is
given by

en,2(X,H) ∼
((

b

2

)b−1 b

b − 1

)1/2

ω
(
log(n)

)−1/2
, n −→ ∞, (1.9)

where ω(x) := 1/xρ(x).

Note that any change of ∼ in the assumption that λn ∼ ρ(n) to either �, ≈ or � leads
to the same change in (1.9). Theorem 1.1 can also be extended to an index b = 1 (see [7]).
Furthermore, a generalization to an arbitrary moment r (see [8]) as well as similar results for
special Gaussian randomvariables and diffusions in non-Hilbertian function spaces (see, e.g.,
[9–11]) have been developed. Moreover, several authors established a precise link between
the quantization error and the behavior of the small ball function of a Gaussian measure (see,
e.g., [12, 13]) which can be used to derive asymptotics of quantization errors. More recently,
for several types of Lèvy processes (sharp) optimal rates have been developed by several
authors (see, e.g., [14–17]).

Coming back to the practical use of quantizers as a good approximation for a stochastic
process, one is strongly interested in a constructive approach that allows to implement the
coding strategy and to compute (at least numerically) good codebooks.

Considering again Gaussian random variables in a Hilbert space setting, the proof
of Theorem 1.1 shows us how to construct asymptotically r-optimal n-quantizers for these
processes, which means that sequences of n-quantizers αn, n ∈ � satisfy

er(X,E, αn) ∼ en,r(X,E), n −→ ∞. (1.10)

These quantizers can be constructed by reducing the quantization problem to a quantization
problem of a finite-dimensional normal distributed random variable. Even if there are
almost no explicit formulas known for optimal codebooks in finite dimensions, the
existence is guaranteed (see [6, Theorem 4.12]) and there exist a lot of deterministic
and stochastic numerical algorithms to compute optimal codebooks (see e.g., [18, 19] or
[20]). Unfortunately, one needs to know explicitly the eigenvalues and eigenvectors of the
covariance operator CX to pursue this approach.

If we consider other non-Hilbertian function spaces (E, ‖ · ‖) or non-Gaussian random
variables in an infinite-dimensional Hilbert space, there is much less known on how to
construct asymptotically optimal quantizers. Most approaches to calculate the asymptotics
of the quantization error are either non-constructive (e.g., [12, 13]) or tailored to one specific
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process type (e.g., [9–11]) or the constructed quantizers do not achieve the sharp rate in the
sense of (1.10) (e.g., [17] or [20]) but just the weak rate

er(X,E, αn) ≈ en,r(X,E), n −→ ∞. (1.11)

In this paper, we develop a constructive approach to calculate sequences of
asymptotically r-optimal n-quantizers (in the sense of (1.10)) for a broad class of random
variables in infinite dimensional Banach spaces (Section 2). Constructive means in this case
that we reduce the quantization problem to the quantization problem of a �d -valued random
variable, that can be solved numerically. This approach can either be used in Hilbert spaces
in case the eigenvalues and eigenvectors of the covariance operator of a Gaussian random
variable are unknown (Sections 3.1 and 3.2), or for quantization problems in different Banach
spaces (Sections 4 and 5).

In Section 4, we discuss Gaussian random variables in (C(0, 1), ‖ · ‖∞). This part is
related to the PhD thesis of Wilbertz [20]. More precisely, we sharpen his constructive results
by showing that the quantizers constructed in the thesis also achieve the sharp rate for
the asymptotic quantization error (in the sense of (1.10)). Moreover, we can show that the
dimensions of the subspaces wherein these quantizers are contained can be lessened without
loosing the sharp asymptotics property.

In Section 5, we use some ideas of Luschgy and Pagès [17] and develop for Gaussian
random variables and for a broad class of Lévy processes asymptotically optimal quantizers
in the Banach space (Lp([0, 1]), ‖ · ‖p).

It is worth mentioning that all these quantizers can be constructed without knowing
the true rate of the quantization error. This means precisely that we know a (rough) lower
bound for the quantization error, that is, en,r(X,E) � C1 log (n)−b1 and the true but unknown
rate is en,r(X,E) ∼ C2 log (n)−b2 for constants C1, C2, b1, b2 ∈ (0,∞), then, we are able to
construct a sequence of n-quantizers αn, n ∈ � that satisfies

er(X,E, αn) ∼ en,r(X,E) ∼ C2 log (n)−b2 , n −→ ∞ (1.12)

for the optimal but still unknown constants C2, b2.
The crucial factors for the numerical implementation are the dimensions of the

subspaces, wherein the asymptotically optimal quantizers are contained. We will calculate
the dimensions of the subspaces obtained through our approach, and we will see that for
all analyzed Gaussian processes, and also for many Lévy processes we are very close to the
known asymptotics of the optimal dimension in the case of Gaussian processes in infinite-
dimensional Hilbert spaces.

We will give some important examples of Gaussian and Lévy processes in Section 6,
and finally illustrate some of our results in Section 7.

Notations and Definitions

If not explicitly differently defined, the following notations hold throughout the paper.

(i) We denote by X a Borel random variable in the separable Banach space (E, ‖ · ‖)
with card(supp(�X)) = ∞.
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(ii) ‖ · ‖ will always denote the norm in E whereas ‖ · ‖Lr (�) will denote the norm in
Lr(Ω,F,�).

(iii) The scalar product in a Hilbert spaceH will be denoted by 〈·, ·〉.
(iv) The smallest integer above a given real number x will be denoted by x�.
(v) A sequence (gj)j∈� ∈ E� is called admissible for a centered Gaussian random

variable X in E if and only if for any sequence (ξi)i∈� of independent N(0, 1)-
distributed random variables it holds that

∑∞
i=1 ξigi converges a.s. in (E, ‖ · ‖) and

X
d=

∑∞
i=1 ξigi. An admissible sequence (gj)j∈� ∈ E� is called rate optimal for X in E

if and only if

�

∥∥∥∥∥
∞∑
i=m

ξigi

∥∥∥∥∥
2

≈ inf

⎧⎨
⎩�

∥∥∥∥∥
∞∑
i=m

ξifi

∥∥∥∥∥
2

:
(
fi

)
i∈� admissible for X

⎫⎬
⎭, (1.13)

asm → ∞. A precise characterization of admissible sequences can be found in [21].

(vi) An orthonormal system (ONS) (hi)i∈� is called rate optimal for X in the Hilbert
spaceH if and only if

�

∥∥∥∥∥
∞∑
i=m

hi〈hi, X〉
∥∥∥∥∥
2

≈ inf

⎧⎨
⎩�

∥∥∥∥∥
∞∑
i=m

fi
〈
fi, X

〉∥∥∥∥∥
2

:
(
fi

)
i∈�ONS in H

⎫⎬
⎭, (1.14)

asm → ∞.

2. Asymptotically Optimal Quantizers

The main idea is contained in the subsequent abstract result. The proof is based on the
following elementary but very useful properties of quantization errors.

Lemma 2.1 (see [22]). Let E, F be separable Banach spaces, X a random variable in E, and T : E →
F.

(1) If T is Lipschitz continuous with Lipschitz constant L, then

en,r(T(X), F) ≤ Len,r(X,E), (2.1)

and for every n-quantizer α for X it holds that

er(T(X), F, T(α)) ≤ Ler(X,E, α). (2.2)

(2) Let T : E → F be linear, surjective, and isometric. Then, for c ≥ 0 and f ∈ F

en,r
(
cT(X) + f, F

)
= cen,r(X,E), (2.3)
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and for every n-quantizer α for X it holds that

er
(
cT(X) + f, F, T(α)

)
= cT(er(X,E, α)) + f. (2.4)

To formulate the main result, we need for an infinite subset J ⊂ � the following.

Condition 1. There exist linear operators Vm : E → Fm ⊂ E for m ∈ J with ‖Vm‖op ≤ 1, for
finite dimensional subspaces Fm with dim(Fm) = m, where the norm ‖ · ‖op is defined as

‖Vm‖op := sup
x∈E,‖x‖≤1

‖Vm(x)‖. (2.5)

Condition 2. There exist linear isometric and surjective operators φm : (Fm, ‖ · ‖) → (�m, | · |m)
with suitable norms | · |m in �m for allm ∈ J .

Condition 3. There exist random variables Zm for m ∈ J in E with Zm
d= X, such that for the

approximation error ‖‖X − Vm(Zm)‖‖Lr (�)it holds that

‖‖X − Vm(Zm)‖‖Lr (�) −→ 0, (2.6)

asm → ∞ along J .

Remark 2.2. The crucial point in Condition 1 is the norm one restriction for the operators Vm.
Condition 2 becomes Important when constructing the quantizers in �

m equipped with, in
the best case, some well-known norm. As we will see in the proof of the subsequent theorem,
to show asymptotic optimality of a constructed sequence of quantizers one needs to know
only a rough lower bound for the asymptotic quantization error. In fact, this lower bound
allows us in combination with Condition 3 to choose explicitly a sequence m(n) ∈ J , n ∈ �

such that

∥∥∥∥X − Vm(n)
(
Zm(n)

)∥∥∥∥
Lr(�)

= o(en,r(X,E)), n −→ ∞. (2.7)

Theorem 2.3. Assume that Conditions 1–3 hold for some infinite subset J ⊂ �. One chooses a
sequence (m(n))n∈� ∈ J� such that (2.7) is satisfied. For n ∈ �, let αn be an r-optimal n-quantizer
for ξn := φm(n)(Vm(n)(Zm(n))) in (�m(n) , | · |m(n)).

Then, (φ−1
m(n)(αn))n∈� is an asymptotically r-optimal sequence of n-quantizers for X in E and

en,r(X,E) ∼
(
�

∥∥∥X − πφ−1
m(n)(αn)

(
Vm(n)

(
Zm(n)

))∥∥∥r)1/r
∼ er

(
X,E, φ−1

m(n)(αn)
)
, (2.8)

as n → ∞.

Remark 2.4. Note, that for n ∈ � there always exist r-optimal n-quantizers for ξn ([6, Theorem
4.12]).
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Proof. Using Condition 3 and the fact that en,r(X,E) > 0 for all n ∈ � since card(supp(�X)) =
∞, we can choose a sequence (m(n))n∈� ∈ �

� fulfilling (2.7). Using Lemma 2.1 and
Condition 2, we see that φ−1

m(n)(αn) is an r-optimal n-quantizer for Vm(n)(Zm(n)) in Fm(n). Then,
by using Condition 1, (2.7), and Lemma 2.1 we get

en,r(X,E) ≤
(
�

∥∥∥X − πφ−1
m(n)(αn)

(
Vm(n)

(
Zm(n)

))∥∥∥r)1/r
≤ (

�
∥∥X − Vm(n)

(
Zm(n)

)∥∥r)1/r

+
(
�

∥∥∥Vm(n)
(
Zm(n)

) − πφ−1
m(n)(αn)

(
Vm(n)

(
Zm(n)

))∥∥∥r)1/r

=
(
�
∥∥X − Vm(n)

(
Zm(n)

)∥∥r)1/r + en,r(Vm(n)
(
Zm(n)

)
,
(
Fm(n), ‖·‖

))

≤ (
�
∥∥X − Vm(n)

(
Zm(n)

)∥∥r)1/r + en,r(Zm(n), E
)

=
(
�
∥∥X − Vm(n)

(
Zm(n)

)∥∥r)1/r + en,r(X,E) ∼ en,r(X,E), n −→ ∞.

(2.9)

The last equivalence of the assertion follows from (1.6).

Remark 2.5. We will usually choose Zm = X for all m ∈ �, with an exception in Section 3 and
J = �.

Remark 2.6. The crucial factor for the numerical implementation of the procedure is the
dimensions (m(n))n∈� of the subspaces (Fm(n))n∈�. For the well-known case of the Brownian
motion in the Hilbert space H = L2([0, 1]) it is known that this dimension sequence can be
chosen as m(n) ≈ log(n), n → ∞. In the following examples we will see that we can often
obtain similar orders like log (n)c for constants c just slightly higher than one.

We point out that there is a nonasymptotic version of Theorem 2.3 for nearly optimal
n-quantizers, that is, for n-quantizers, which are optimal up to ε > 0. Its proof is analogous to
the proof of Theorem 2.3.

Proposition 2.7. Assume that Conditions 1–3 hold. Letm(ε) := inf{m ∈ � : ‖X − Vm(Zm)‖Lr(�) <
ε}, and for n ∈ � one sets ξn := φm(ε)(Vm(ε)(Zm(ε))). Then, it holds for every n ∈ � and for every
r-optimal n-quantizer αn for ξn in (�m(ε) , | · |m(ε)) that

er
(
X,E, πφ−1

m(ε)(αn)
(
Vm(ε)

(
Zm(ε)

))) ≤ en,r(X,E) + ε. (2.10)

3. Gaussian Processes with Hilbertian Path Space

In this chapter, let X be a centered Gaussian random variable in the separable Hilbert space
(H, 〈·, ·〉). Following the approach used in the proof of Theorem 1.1, we have for every
sequence (ξi)i∈� of independentN(0, 1)-distributed random variables

X
d=

∞∑
i=1

√
λifiξi, (3.1)
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where λi denote the eigenvalues and fi denote the corresponding orthonormal eigenvectors
of the covariance operator CX of X (Karhunen-Loève expansion). If these parameters are
known, we can choose a sequence (dn)n∈� such that a sequence of optimal quantizer αn for
Xn =

∑d(n)
i=1

√
λifiξi is asymptotically optimal for X in E.

In order to construct asymptotically optimal quantizers for Gaussian random variables
with unknown eigenvalues or eigenvectors of the covariance operator, we start with more
general expansions. In fact, we just need one of the two orthogonalities, either in L2(�) or
inH .

Before we will use these representations for X to find suitable triples (Vm, Fm, φm) as
in Theorem 2.3, note that for Gaussian random variables inH fulfilling suitable assumptions
we know that

(1) Let (hi)i∈� be an orthonormal basis ofH . Then

X =
∞∑
i=1

hi〈hi, X〉 a.s.. (3.2)

Compared to (3.1) we see that 〈hi, X〉 are still Gaussian but generally not
independent.

(2) Let (gj)j∈� be an admissible sequence for X inH such that

X
d=

∞∑
i=1

ξigi. (3.3)

Compared to (3.1) the sequence (gi)i∈� is generally not orthogonal.

en,2(X,H) ≈ en,s(X,H), n −→ ∞ (3.4)

for all s ≥ 1; see [13]. Thus, we will focus on the case s = 2 to search for lower bounds for the
quantization errors.

3.1. Orthonormal Basis

Let (hm)m∈� be an orthonormal basis of H . For the subsequent subsection we use the
following notations.

(1) We set Fm = span{h1, . . . , hm}.
(2) We set Vm := prFm : E → Fm, the orthogonal projection on Fm. It is well known that

‖Vm‖op = 1.

(3) Define the linear, surjective, and isometric operators φm by

φm : (Fm, ‖·‖) −→ (�m, ‖·‖2), hi −→ ei, (3.5)

where ei denotes the ith unit vector in �m , 1 ≤ i ≤ m.
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Theorem 3.1. Assume that the eigenvalue sequence (λj)j∈� of the covariance operator CX satisfies

λj ≈ j−b for −b < −1, and let ε > 0 be arbitrary. Assume further that (hj)j∈� is a rate optimal ONS

for X in H . One sets m(n) = log (n)1+ε� for n ∈ �. Then, one gets for every sequence (αn)n∈� of
r-optimal n-quantizers for φm(n)(Vm(n)(X)) in (�m(n) , ‖ · ‖2) the asymptotics

en,r(X,H) ∼ er
(
X,H, φ−1

m(n)(αn)
)
∼

(
�

∥∥∥X − πφ−1
m(n)(αn)

(
Vm(n)(X)

)∥∥∥r)1/r
, (3.6)

as n → ∞.

Proof. Let (fj)j∈� be the corresponding orthonormal eigenvector sequence of CX . Classic
eigenvalue theory yields for everym ∈ �

�

∥∥∥∥∥
∞∑
i=m

fi
〈
fi, X

〉∥∥∥∥∥
2

=
∞∑
i=m

λi ≤
∞∑
i=m

�〈hi, X〉2 = �

∥∥∥∥∥
∞∑
i=m

hi〈hi, X〉
∥∥∥∥∥
2

. (3.7)

Combining this with rate optimality of the ONS (hj)j∈� for X, we get

�
∥∥X − Vm(n)(X)

∥∥2 = �

∥∥∥∥∥∥
∞∑

i=m(n)+1

hi〈hi, X〉
∥∥∥∥∥∥
2

=
∞∑

i=m(n)+1

�〈hi, X〉2

≈
∞∑

i=m(n)+1

λj ≈ m(n)−(b−1), n −→ ∞.

(3.8)

Using the equivalence of the r-norms of Gaussian random variables ([23, Corollary 3.2]), and
since X − Vm(n)(X) is Gaussian, we get for all r ≥ 1

∥∥∥∥X − Vm(n)(X)
∥∥∥∥

Lr (�)
≈ m(n)−(1/2)(b−1), n −→ ∞. (3.9)

With ω as in Theorem 1.1, we get by using (3.4) and Theorem 1.1 the weak asymptotics
en,r(X,H) ≈ (ω(log(n)))−1/2 ≈ (log(n))−(1/2)(b−1), n → ∞. Therefore, the sequence (m(n))n∈�
satisfies (2.7) since

∥∥∥∥X − Vm(n)(X)
∥∥∥∥

Lr(�)
≈ (

log(n)
)−(1/2)(b−1)(1+ε) = o(en,r(X,H)), n −→ ∞, (3.10)

and the assertion follows from Theorem 2.3.

3.2. Admissible Sequences

In order to show that linear operators Vm similar to those used in the subsection above are
suitable for the requirements of Theorem 2.3, we need to do some preparations. Since the
covariance operator CX of a Gaussian random variable is symmetric and compact (in fact
trace class), we will use a well-known result concerning these operators. This result can be
used for quantization in the following way.
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Lemma 3.2. Let X be a centered Gaussian random variable with values in the Hilbert space H and
X = X1 +X2, where X1 and X2 are independent centered Gaussians. Then

CX = CX1 + CX2 . (3.11)

Let λi, λ
(1)
i , λ

(2)
i , i ∈ � be the positive monotone decreasing eigenvalues of CX,CX1 , and CX2 . Then, for

i ∈ � it holds that

λ
(1)
i , λ

(2)
i ≤ λi. (3.12)

Proof. Since X1, X2 are independent centered Gaussians, we have �〈X1 , u〉X2 =
�〈X1 , u〉�X2 = 0 for all u ∈ H . This easily leads to

CX(u) = �〈X1 +X2, u〉(X1 +X2) = �〈X1, u〉X1

+ �〈X2, u〉X2 = CX1(u) +CX2(u).
(3.13)

The covariance operator of a centered Gaussian random variable is positive semidefinite.
Hence, by using a result on the relation of the eigenvalues of those operators (see, e.g., [24,
page 213]), we get inequalities (3.12).

Let (gi)i∈� be an admissible sequence for X, and assume that
∑∞

i=1 ξigi = X a.s. In this
subsection, we use the following notations.

(1) We set Fm := span{g1, . . . , gm}.
(2) We define Vm : H → Fm ⊂ H by

Vm
(
fj

)
:= f (m)

j

√√√√λ
(m)
j

λj
, (3.14)

for j ≤ m and Vm(fj) := 0 for j > m, where λj and fj denote the eigenvalues and
the corresponding eigenvectors of CX and λ

(m)
j and f

(m)
j the eigenvalues and the

corresponding eigenvectors of CXm , with Xm defined as

Xm :=
m∑
i=1

giξi. (3.15)

Note that Vm mapsH onto Fm since

span
{
g1, . . . , gm

}
= span

{
f
(m)
1 , . . . , f

(m)
m

}
. (3.16)

Furthermore, it is important to mention that one does not need to know λj and
fj explicitly to construct the subsequent quantizers, since we can find for any
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m ∈ � a random variable Zm
d= X such that Vm(Zm) =

∑m
i=1 ξigi (see the proof of

Theorem 3.3), which is explicitly known and sufficient to know for the construction.

(3) Define the linear, surjective, and isometric operators φm by

φm : (Fm, ‖·‖) −→ (�m, ‖·‖2), f
(m)
i −→ ei, (3.17)

where ei denotes the ith unit vector of �m for 1 ≤ i ≤ m.

Theorem 3.3. Assume that the eigenvalue sequence (λj)j∈� of the covariance operator CX satisfies

λj ≈ j−b for −b < −1, and let ε > 0 arbitrary. Assume that (gj)j∈� is a rate optimal admissible sequence

for X inH . One setsm(n) = log (n)1+ε� for n ∈ �. Then, there exist random variables Zm, m ∈ �,

with Zm
d= X such that for every sequence (αn)n∈� of r-optimal n-quantizers for φm(n)(Vm(n)(Zm(n)))

in (�m(n) , ‖ · ‖2)

en,r(X,H) ∼ er
(
X,H, φ−1

m(n)(αn)
)
∼

(
�

∥∥∥X − πφ−1
m(n)(αn)

(
Vm(n)

(
Zm(n)

))∥∥∥r)1/r
, (3.18)

as n → ∞.

Proof. Linearity of (Vm)m∈� follows from the orthogonality of the eigenvectors. In view of the
inequalities for the eigenvalues in Lemma 3.2 and the orthonormality of the family (fi)i∈�,
we have for every h =

∑∞
i=1 fiai ∈H with ‖h‖2 = ∑∞

i=1 a
2
i ≤ 1

‖Vm(h)‖2 =
∥∥∥∥∥Vm

( ∞∑
i=1

aifi

)∥∥∥∥∥
2

=
m∑
i=1

a2i
λ
(m)
i

λi
≤

∞∑
i=1

a2i ≤ 1, (3.19)

such that ‖Vm‖op ≤ 1.
Note next that for every m ∈ � there exist independent N(0, 1)-distributed random

variables (ζ(m)
i )1≤i≤m satisfying

m∑
i=1

ξigi =
m∑
i=1

√
λ
(m)
i f

(m)
i ζ

(m)
i a.s. (3.20)

Then, we choose random variables (ζ(m)
i )

m+1≤i<∞ such that (ζ(m)
i )1≤i<∞ is a sequence of

independentN(0, 1)-distributed random variables. We set

Zm :=
∞∑
i=1

ζ
(m)
i

√
λifi (3.21)
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and get by using rate optimality of the admissible sequences (gj)j∈� and (
√
λjfj)j∈�

�‖X − Vm(Zm)‖2 = �

∥∥∥∥∥
∞∑
i=1

giξi − Vm(
∞∑
i=1

√
λifiζ

(m)
i )

∥∥∥∥∥
2

= �

∥∥∥∥∥
∞∑
i=1

giξi −
m∑
i=1

√
λ
(m)
i f

(m)
i ζ

(m)
i

∥∥∥∥∥
2

= �

∥∥∥∥∥
∞∑

i=m+1

giξi

∥∥∥∥∥
2

≈ �

∥∥∥∥∥
∞∑

i=m+1

√
λifiξi

∥∥∥∥∥
2

=
∞∑

i=m+1

λi ≈ m−(b−1), m −→ ∞,

(3.22)

where rate optimality of (
√
λjfj)

j∈�
is a consequence of

‖‖X‖‖2L2(�) − �
∥∥∥∥∥

∞∑
i=m+1

giξi

∥∥∥∥∥
2

= �

∥∥∥∥∥
m∑
i=1

giξi

∥∥∥∥∥
2

=
m∑
i=1

λ
(m)
i ≤

m∑
i=1

λi. (3.23)

Using the equivalence of the r-norms of Gaussian random variables ([23, Corollary 3.2]), and
since X − Vm(n)(X) is Gaussian, we get for all r ≥ 1

∥∥∥∥X − Vm(n)(X)
∥∥∥∥

Lr (�)
≈ m(n)−(1/2)(b−1), n −→ ∞. (3.24)

With ω as in Theorem 1.1, we get by using (3.4) and Theorem 1.1 the weak asymptotics
en,r(X,H) ≈ (ω(log(n)))−1/2 ≈ (log(n))−(1/2)(b−1), n → ∞. Therefore, the sequence (m(n))n∈�
satisfies (2.7) since

∥∥∥∥X − Vm(n)(X)
∥∥∥∥

Lr(�)
≈ (

log(n)
)−(1/2)(b−1)(1+ε) = o(en,r(X,H)), n −→ ∞, (3.25)

and the assertion follows from Theorem 2.3.

3.3. Comparison of the Different Schemes

At least in the case r = 2, we have a strong preference for using the method as described
in Section 3.1. We use the notations as in the above subsections including an additional
indexation i = 1, 2 for (V (i)

m , φ
(i)
m , α

(i)
n ) and m,n ∈ �, where α(i)n , for i = 1, 2, are defined as

in Theorems 3.1 and 3.3. Note that for this purpose the size of the codebook n and the size of
the subspaces dim(Fm) = m can be chosen arbitrarily (i.e.,m does not depend on n). The ONS
(hi)i∈� is chosen as the ONS derived with the Gram-Schmidt procedure from the admissible
sequence (gj)j∈� for the Gaussian random variable X in the Hilbert space H , such that the
definition of Fm coincides in the twosubsections.



Journal of Applied Mathematics 13

Proposition 3.4. It holds form,n ∈ � that

�

∥∥∥∥X − π
(φ(2)

m )
−1
(α(2)n )

(
V

(2)
m (Zm)

)∥∥∥∥
2

≥ �

∥∥∥∥X − π
(φ(1)

m (φ(1)
m )

−1
(α(1)n )

(V (1)
m (X))

∥∥∥∥
2

. (3.26)

Proof. Consider forX the decomposition X = prF⊥
m
(X) +prFm(X). The key is the orthogonality

of prF⊥
m
(X) to prFm(X), π

(φ(2)
m )

−1
(α(2)n )

(V (2)
m (Zm)), and π

(φ(1)
m )

−1
(α(1)n )

(V (1)
m (X)), which gives the two

equalities in the following calculation:

�

∥∥∥∥X − π
(φ(2)

m )
−1
(α(2)n )

(
V

(2)
m (Zm)

)∥∥∥∥
2

= �

∥∥∥∥prFm(X) − π
(φ(2)

m )
−1
(α(2)n )

(
V

(2)
m

(
Z

(2)
m

))∥∥∥∥
2

+ �
∥∥prF⊥

m
(X)

∥∥2

(∗)
≥ �

∥∥∥∥prFm(X) − π
(φ(1)

m )
−1
(α(1)n )

(
V

(1)
m (X)

)∥∥∥∥
2

+ �
∥∥prF⊥

m
(X)

∥∥2

= �

∥∥∥X − π(φ(1)
m )−1(α(1)n )(V

(1)
m (X))

∥∥∥2
.

(3.27)

The inequality (∗) follows from the optimality of the codebook (φ(1)
m )

−1
(α(1)n ) for prFm(X) =

V
(1)
m (X).

4. Gaussian Processes with Paths in (C([0, 1]), ‖ · ‖∞)
In the previous section, where we worked with Gaussian random variables in Hilbert spaces,
we saw that special Hilbertian subspaces, projections, and other operators linked to the
Gaussian random variable were good tools to develop asymptotically optimal quantizers
based on Theorem 2.3. Since we now consider the non-Hilbertian separable Banach space
(C([0, 1]), ‖ · ‖∞), we have to find different tools that are suitable to use Theorem 2.3.

The tools used in [20] are B-splines of order s ∈ �. In the case s = 2, that we will
consider in the sequel, these splines span the same subspace of C([0, 1], ‖ · ‖∞) as the classical
Schauder basis. We set for x ∈ [0, 1],m ≥ 2, and 1 ≤ i ≤ m the knots t(m)

i := (i− 1)/(m − 1) and
the hat functions

f
(m)
i (x) := χ[t(m)

i ,t
(m)
i+1 ]

(x)
(
1 −

(
x − t(m)

i

)
(m − 1)

)
+ χ[t(m)

i−1 ,t
(m)
i )(x)

(
x − t(m)

i−1
)
(m − 1). (4.1)

For the remainder of this subsection, we will use the following notations.

(1) As subspaces Fm we set Fm := span{f (m)
j , 1 ≤ j ≤ m}.

(2) As linear and continuous operatorsVm : C([0, 1]) → Fm we set the quasiinterpolant

Vm
(
f
)
:=

m∑
i=1

f
(m)
i β

(m)
i

(
f
)
, (4.2)

where β(m)
i (f) := f(t(m)

i ).
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(3) The linear and surjective isometric mappings φm one defines as

φm : (Fm, ‖·‖∞) −→ (Rm, ‖·‖∞),
m∑
i=1

aif
(m)
i −→ (a1, . . . , am).

(4.3)

It is easy to see that ‖∑m
i=1 aif

(m)
i ‖∞ = ‖(a1, . . . , am)‖∞ holds for every a ∈ �

m .

For the application of Theorem 2.3, we need to know the error bounds for the
approximation of X with the quasiinterpolant Vm(X). For Gaussian random variables, we
can provide the following result based on the smoothness of an admissible sequence for X in
E.

Proposition 4.1. Let (gj)j∈� be admissible for the centered Gaussian random variable X in
(C([0, 1]), ‖ · ‖∞). Assume that

(1) ‖gj‖ ≤ C1j−θ for every j ≥ 1, θ > 1/2, and C1 < ∞,

(2) gj ∈ C2([0, 1]) with ‖g ′′
j ‖ ≤ C2j−θ+2 for every j ≥ 1 and C2 <∞.

Then, for any ε > 0 and some constant C < ∞it holds that

‖‖X − Vm(X)‖‖Lr (�) ≤ Cm−0,8(θ−(1/2))+ε, (4.4)

for every r ≥ 1.

Proof. Using of [25, Theorem 1], we get

∥∥∥∥∥
∥∥∥∥∥

∞∑
i=k

ξigi

∥∥∥∥∥
∥∥∥∥∥
Lr(�)

≤ C3

kθ−(1/2)−ε1
(4.5)

for an arbitrary ε1 > 0, some constant C3 <∞, and every k ∈ �. Thus, we have

‖‖X − Vm(X)‖‖Lr(�) ≤
∥∥∥∥∥
∥∥∥∥∥

∞∑
i=k

ξigi

∥∥∥∥∥
∥∥∥∥∥
Lr(�)

+

∥∥∥∥∥
∥∥∥∥∥Vm

( ∞∑
i=k

ξigi

)∥∥∥∥∥
∥∥∥∥∥
Lr(�)

+

∥∥∥∥∥
∥∥∥∥∥
k−1∑
i=1

ξigi − Vm
(

k−1∑
i=1

ξigi

)∥∥∥∥∥
∥∥∥∥∥
Lr(�)

≤ 2C3

kθ−(1/2)−ε1
+

∥∥∥∥∥
∥∥∥∥∥
k−1∑
i=1

ξigi − Vm
(

k−1∑
i=1

ξigi

)∥∥∥∥∥
∥∥∥∥∥
Lr(�)

.

(4.6)

Using of [26, Chapter 7, Theorem 7.3], we get for some constant C4 <∞
∥∥∥∥∥
k−1∑
i=1

ξigi −Wm

(
k−1∑
i=1

ξigi

)∥∥∥∥∥ ≤ C4ω

(
k−1∑
i=1

ξigi,
1

m − 1

)
, (4.7)
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where the module of smoothness ω(f, δ) is defined by

ω
(
f, δ

)
:= sup

0≤h<δ

∥∥f(x) − 2f(x + h) + f(x + 2h)
∥∥
∞. (4.8)

For an arbitrary f ∈ C2([0, 1]) we have by using Taylor expansion

∥∥f(x) − 2f(x + h) + f(x + 2h)
∥∥
∞

h2
≤ 2

∥∥f ′′∥∥
∞. (4.9)

Combining this, we get for an arbitrary ε2 > 0 and constants C5, C6, C7 < ∞, using again the
equivalence of Gaussian moments,

‖‖X − Vm(X)‖‖Lr(�) ≤
2C3

kθ−(1/2)−ε1
+

1
m2

(
�

∥∥∥∥∥2
k−1∑
i=1

ξig
′′
i

∥∥∥∥∥
r

∞

)1/r

≤ 2C3

kθ−(1/2)−ε1
+

1
m2C5�

∥∥∥∥∥2
k−1∑
i=1

ξig
′′
i

∥∥∥∥∥
∞

≤ 2C3

kθ−(1/2)−ε1
+

1
m2C6

k−1∑
i=1

iθ+2+ε2� |ξi|

≤ 2C3

kθ−(1/2)−ε1
+

1
m2

C7k
−θ+3+ε2 .

(4.10)

To minimize over k, we choose k = k(m) = m0,8. Thus, we get for some constant C < ∞ and
an arbitrary ε > 0

‖‖X − Vm(X)‖‖Lr (�) ≤ Cm−0,8(θ−(1/2))+ε. (4.11)

Now, we are able to prove the main result of this section.

Theorem 4.2. Let X be a centered Gaussian random variable and (gj)j∈� an admissible sequence for
X in C([0, 1]) fulfilling the assumptions of Proposition 4.1 with θ = b/2, where the constant b > 1
satisfies λj � Kj−b with λj, j ∈ � denoting the monotone decreasing eigenvalues of the covariance
operator CX of X in H = L2([0, 1]) and K > 0. One sets m(n) := log (n)(5/4)+ε� for some ε > 0.
Then, for every sequence (αn)n∈� of r-optimal n-quantizers for φm(n)(Vm(n)(X)) in (�m(n) , ‖ · ‖∞), it
holds that

en,r(X, (C([0, 1]), ‖·‖∞)) ∼ er
(
X,C([0, 1]), φ−1

m(n)(αn)
)

∼
(
�

∥∥∥X − πφ−1
m(n)(αn)

(Vm(n)(X))
∥∥∥r
∞

)1/r
,

(4.12)

as n → ∞.
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Proof. For every h ∈ C(([0, 1]), ‖ · ‖∞), with ‖h‖∞ ≤ 1it holds that

‖Vm(h)‖∞ ≤ sup
x∈[0,1]

m∑
i=1

∣∣∣h(t(m)
i

)∣∣∣f (m)
i (x) ≤ ‖h‖∞ sup

x∈[0,1]

m∑
i=1

f
(m)
i (x) ≤ 1, (4.13)

since {f (m)
i , 1 ≤ i ≤ m} are partitions of the one for everym ∈ �, so that ‖Vm‖op ≤ 1.
We get a lower bound for the quantization error en,r(X,C([0, 1])) from the inequality

∥∥f∥∥L2([0,1])
≤ ∥∥f∥∥∞, (4.14)

for all f ∈ C([0, 1]) ⊂ L2([0, 1]). Consequently, we have

en,r(X,C([0, 1])) ≥ en,r(X, L2([0, 1])). (4.15)

From Theorem 1.1 and (3.4) we obtain

(log(n))−(1/2)(b−1) ≈ (
ω

(
log(n)

))−1/2
� en,r(X,C([0, 1])), n −→ ∞, (4.16)

where ω is given as in Theorem 1.1. Finally, we get by combining (4.16) and Proposition 4.1
for sufficiently small δ > 0

∥∥∥∥X − Vm(n)(X)
∥∥∥∥

Lr (�)
≤ Cm(n)−0,8((1/2)(b−1))+δ

= o
((

log(n)
)−(1/2)(b−1)) = o(en,r(X,C([0, 1]))), n −→ ∞,

(4.17)

and the assertion follows from Theorem 2.3.

5. Processes with Path Space Lp([0, 1], ‖ · ‖p)
Another useful tool for our purposes is the Haar basis in Lp([0, 1]) for 1 ≤ p < ∞, which is
defined by

e0 := χ[0,1] e1 := χ[0,1/2) − χ[1/2,1]

e2n+k := 2n/2e1(2n · −k), n ∈ �, k ∈ {0, . . . , 2n − 1}.
(5.1)

This is an orthonormal basis of L2([0, 1]) and a Schauder basis of Lp([0, 1]) for p ∈ [1,∞), that
is, 〈f, e0〉 +

∑∞
n=0

∑2n−1
k=1 〈f, e2n+k〉e2n+k converges to f in Lp([0, 1]) for every f ∈ Lp([0, 1]); see

[27].
The Haar basis was used in [17] to construct rate optimal sequences of quantizers

for mean regular processes. These processes are specified through the property that for all
0 ≤ s ≤ t ≤ 1

� |Xt −Xs|p ≤
(
ρ(t − s))p, (5.2)
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where ρ : �+ → [0,∞) is regularly varying with index b > 0 at 0, which means that

lim
x→ 0

ρ(cx)
ρ(x)

= cb, (5.3)

for all c > 0. Condition (5.2) also guarantees that the paths t → Xt lie in Lp([0, 1]).
For our approach, it will be convenient to define form ∈ � and 1 ≤ i ≤ m + 1 the knots

t
(m)
i := (i − 1)/m and for 1 ≤ i ≤ m − 1 the functions

f
(m)
i (x) := χ[t(m)

i ,t
(m)
i+1 )

(x)
√
m, f

(m)
m (x) := χ[t(m)

m ,1](x)
√
m (5.4)

and the operators

Vm
(
f
)
:=

m∑
i=1

f
(m)
i

〈
f
(m)
i , f

〉
. (5.5)

Note that for f ∈ L1([0, 1]),m = 2n+1, and n ∈ �0

〈
e0, f

〉
e0 +

n∑
i=0

2i−1∑
k=0

〈
e2i+k, f

〉
e2i+k =

m∑
i=1

f
(m)
i

〈
f
(m)
i , f

〉
. (5.6)

For the remainder of the subsection, we set the following.

(1) We set form ∈ � the subspaces Fm := span{f (m)
1 , . . . , f

(m)
m }.

(2) Set the linear and continuous operator Vm to

Vm : Lp([0, 1]) −→ Fm

f −→
m∑
i=1

〈
f
(m)
i , f

〉
f
(m)
i .

(5.7)

(3) For p ∈ [1,∞) we set the isometric isomorphisms φm,p : (Fm, ‖ · ‖Lp) → (�m, ‖ · ‖p)
as

φm,p

(
m∑
i=1

aif
(m)
i

)
:= m(1/2−1/p)(a1, . . . , am). (5.8)

Theorem 5.1. Let X be a random variable in the Banach space (E, ‖ ·‖) = (Lp([0, 1]), ‖ · ‖p) for some
p ∈ [1,∞) fulfilling the mean pathwise regularity property

‖Xt −Xs‖Lr∨p ≤ C(t − s)a, (5.9)
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for constants C, a > 0 and t > s ∈ [0, 1]. Moreover, assume that K log (n)−b � en,r(X,E) for
constants K, b > 0. Then, for an arbitrary ε > 0 and m(n) := (log(n))(b/a)+ε�it holds that every
sequence of r-optimal n-quantizers (αn)n∈� for φm(n),p(Vm(n)(X)) in (�m(n) , ‖ · ‖p) satisfies

en,r
(
X, Lp([0, 1])

) ∼ er
(
X, Lp([0, 1]), φ−1

m(n),p(αn)
)

∼
(
�

∥∥∥X − πφ−1
m(n),p(αn)

(
Vm(n)(X)

)∥∥∥r
Lp

)1/r

,

(5.10)

as n → ∞.

Proof. As in the above subsections, we check that the sequences Vm and φm,p satisfy
Conditions 1–3. Since Vm(f) = �λ(f | Fm), where Fm is defined by

Fm := σ
(
f
(m)
1 , . . . , f

(m)
m

)
, (5.11)

we get for f ∈ Lp([0, 1]), with ‖f‖p ≤ 1 and p ∈ [1,∞) by using Jensen’s inequality,

∥∥Vm(
f
)∥∥p

Lp
=

∫
[0,1]

∣∣�λ (f | Fm)
∣∣pdλ ≤ ∥∥f∥∥pLp , (5.12)

and thus ‖Vm‖op ≤ 1. The operators φm,p satisfy Condition 2 of Theorem 2.3 since

∥∥∥∥∥
m∑
i=1

aif
(m)
i

∥∥∥∥∥
p

Lp

=
m∑
i=1

|ai|p
∫
[0,1]

(
f
(m)
i

)p
= m(p/2−1)

m∑
i=1

|ai|p

=
∥∥∥m(1/2−1/p)(a1, . . . , am)

∥∥∥p
p
.

(5.13)

For Condition 3, we note that for t ∈ [0, 1]

Xt =
m∑
i=1

f
(m)
i (t)

√
m

∫
[t(m)
i ,t

(m)
i+1 ]

Xtdλ(s),

(Vm(X))t =
m∑
i=1

f
(m)
i (t)

√
m

∫
[t(m)
i ,t

(m)
i+1 ]

Xsdλ(s).

(5.14)

Using the inequalities

∥∥f∥∥
Lp′

≤ ∥∥f∥∥
Lp
, ‖X‖Lr′ (�) ≤ ‖X‖Lr (�), (5.15)
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for r ≥ r ′, p ≥ p′, f ∈ Lp and X ∈ Lr(�), we get

∥∥∥‖X − Vm(X)‖Lp([0,1])
∥∥∥p∨r
Lr(�)

≤
∥∥∥‖X − Vm(X)‖Lp∨r([0,1])

∥∥∥p∨r
Lp∨r (�)

=
∥∥∥‖X − Vm(X)‖Lp∨r(�)

∥∥∥p∨r
Lp∨r ([0,1])

=
∫
[0,1]

�

∣∣∣∣∣
m∑
i=1

f
(m)
i (t)

√
m

∫
[t(m)
i ,t

(m)
i+1 ]

(Xt −Xs)dλ(s)

∣∣∣∣∣
p∨r
d�dλ(t)

≤
∫
[0,1]

∣∣∣∣∣∣∣∣∣∣

m∑
i=1

f
(m)
i (t)

√
m

∫
[t(m)
i ,t

(m)
i+1 ]

‖Xt −Xs‖Lr∨p(�)dλ(s)
︸ ︷︷ ︸

≤C/ma+1

∣∣∣∣∣∣∣∣∣∣

p∨r

dλ(t)

≤
∫
[0,1]

∣∣∣∣χ[0,1](t)
C

ma

∣∣∣∣
p∨r
dλ(t) =

Cp∨r

ma(p∨r) .

(5.16)

Therefore, we know that the sequence (m(n))n∈� satisfies (2.7) since we get with (5.16)

∥∥∥∥∥X − Vm(n)(X)
∥∥
Lp([0,1])

∥∥∥
Lr(�)

≤ Cp∨r

m(n)a
= o

(
log (n)−b

)
= o(en,r(X,E)), (5.17)

as n → ∞, and the assertion follows from Theorem 2.3.

6. Examples

In this section, we want to present some processes that fulfill the requirements of the
Theorems 3.1, 3.3, 4.2, and 5.1. Firstly, we give some examples for Gaussian processes that
can be applied to all of the four Theorems, and secondly we describe how our approach can
be applied to Lévy processes in view of Theorem 5.1.

Examples 6.1. Gaussian Processes and Brownian Diffusions

(i) Brownian Motion and Fractional Brownian Motion

Let (X(H)
t )t∈[0,1] be a fractional Brownian motion with Hurst parameterH ∈ (0, 1) (in the case

H = 1/2 we have an ordinary Brownian motion). Its covariance function is given by

�X
(H)
s X

(H)
t =

1
2

(
s2H + t2H − |s − t|2H

)
. (6.1)

Note that except for the case of an ordinary Brownian motion the eigenvalues and
eigenvectors of the fractional Brownian motion are not known explicitly. Nevertheless, the
sharp asymptotics of the eigenvalues has been determined (see, e.g., [7]).



20 Journal of Applied Mathematics

In [28] the authors constructed an admissible sequence (gj)j∈� inC([0, 1]) that satisfies
the requirements of Proposition 4.1 with θ = 1/2 + H . Furthermore, the eigenvalues λj of
CX(H) in L2([0, 1]) satisfy λj ≈ j−(1+2H), see, for example, [7], such that the requirements for
Theorem 4.2 are satisfied. Additionally, this sequence is a rate optimal admissible sequence
for X(H) in L2([0, 1]), such that the requirements for Theorem 3.3 are also met. Constructing
recursively an orthonormal sequence (hj)j∈� by applying Gram-Schmidt procedure on the

sequence (gj)j∈� yields a rate optimal ONS for X(H) in L2([0, 1]) that can be used in the

application of Theorem 3.1. In Section 7 we will illustrate the quantizers constructed forX(H)

with this ONS for several Hurst parameters H . Note that there are several other admissible
sequences for the fractional Brownian motion which can be applied similarly as described
above; see, for example, [29] or [30]. Moreover, we have for s, t ∈ [0, 1] the mean regularity
property

�

∥∥∥XH
t −XH

s

∥∥∥p = CH,p|t − s|pH, (6.2)

and the asymptotics of the quantization error is given as

en,r
(
XH, Lp([0, 1])

)
≈ en,2

(
XH, L2([0, 1])

)
≈ (

log(n)
)−H

, n −→ ∞ (6.3)

for all r, p ≥ 1 (see [13]), such that the requirements of Theorem 5.1 are met with a = b = H .
Note that in [11] the authors showed the existence of constants k(H,E) for E = C([0, 1]) and
E = Lp([0, 1]) independent of r such that

en,r
(
XH, E

)
∼ k(H,E)(log(n))−H, n −→ ∞. (6.4)

Therefore, the quantization errors of the sequences of quantizers constructed via Theorems
3.1, 3.3, 4.2, and 5.1 also fulfill this sharp asymptotics.

(ii) Brownian Bridge

Let (Bt)t∈[0,1] be a Brownian bridge with covariance function

�BsBt = min(s, t) − st. (6.5)

Since the eigenvalues and eigenvectors of the Brownian bridge are explicitly known, we do
not have to search for any other admissible sequence or ONS for (Bt)t∈[0,1] to be applied
in H = L2([0, 1]). This (the eigenvalue-eigenvector) admissible sequence also satisfies
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the requirements of Theorem 4.2. The mean pathwise regularity for the Brownian bridge can
be deduced by

(
� |Bt − Bs|p

)1/p ≤ Cp,2

(
� |Bt − Bs|2

)1/2

= Cp,2

(
|t − s| − |t − s|2

)1/2

≤ C|t − s|1/2,

(6.6)

for any p ≥ 1. Combining [31, Theorem 3.7] and [13, Corollary 1.3] yields

en,r
(
B, Lp([0, 1])

) ≈ (
log(n)

)−1/2
, n −→ ∞, (6.7)

for all r, p ≥ 1, such that Theorem 5.1 can be applied with a = b = 1/2.

(iii) Stationary Ornstein-Uhlenbeck Process

The stationary Ornstein-Uhlenbeck process (Xt)t∈[0,1] is a Gaussian process given through the
covariance function

�XsXt =
σ2

2α
exp(−α|s − t|), (6.8)

with parameters α, σ > 0. An admissible sequence for the stationary Ornstein-Uhlenbeck
process in C([0, 1]) and L2([0, 1]) can be found in [21]. This sequence that can be applied
to Theorems 3.3 and 4.2 and also by applying Gram-Schmidt procedure to Theorem 3.1.
According to [13] we have

en,r
(
X, Lp([0, 1])

) ≈ (
log(n)

)−1/2
, n −→ ∞ (6.9)

for all r, p ≥ 1. Furthermore, it holds that

(
� |Xt −Xs|p

)1/p = Cp,2

(
� |Xt −Xs|2

)1/2

= Cp,2

(
σ2

α

(
1 − exp(−α|s − t|))

)1/2

≤ C|s − t|1/2,

(6.10)

and therefore we can choose a = b = 1/2 to apply Theorem 5.1.
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(iv) Fractional Ornstein-Uhlenbeck Process

The fractional Ornstein-Uhlenbeck process (X(H)
t )t∈[0,1] for H ∈ (0, 2) is a continuous

stationary centered Gaussian process with the covariance function

�X
(H)
s X

(H)
t = e−α|t−s|

H

, α > 0. (6.11)

In [22] the authors constructed an admissible sequence (gj)
(H)
j∈� for H ∈ (0, 1] that satisfies

the requirements of Proposition 4.1 with θ = 1/2 +H/2. Since the eigenvalues λj of CX(H) in
L2([0, 1]) satisfy λj ≈ j−1+H , we get again that the assumptions of Theorem 4.2 are satisfied.
Similarly, we can use this sequence in Theorems 3.3 and 3.1.

(v) Brownian Diffusions

We consider a 1-dimensional Brownian diffusion (Xt)t∈[0,1] fulfilling the SDE

Xt =
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, (6.12)

where the deterministic functions b, σ : [0, 1] × � → � satisfy the growth assumption

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|). (6.13)

Under some additional ellipticity assumption on σ, the asymptotics of the quantization error
in (Lp([0, 1], ‖ · ‖p) is then given by

en,r
(
X, Lp([0, 1])

) ≈ (
log(n)

)−1/2
, (6.14)

as n → ∞ (see [10] and also [32]). Furthermore, one shows that for 0 ≤ s ≤ t ≤ 1

(
�‖Xt −Xs‖p

)1/p ≤ C(t − s)1/2 (6.15)

(see [17, Examples 3.1]) such that Theorem 5.1 can be applied with a = b = 1/2.

Examples 6.2 (Lévy processes). Let (Xt)t∈[0,1] be a real Lévy process, that is,X is a càdlàg process
with �(X0 = 0) = 1 and stationary and independent increments. The characteristic exponent
ψ(u) given through the equation

∫
�

exp(iux)�X1(dx) = exp
(−ψ(u)), u ∈ �, (6.16)

is characterized by the Lévy-Khintchine formula

ψ(u) = iau +
1
2
σ2u2 +

∫
�

(
1 − eiux + iuxχ(|x|<1)

)
Π(dx), (6.17)
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where the characteristic triple (a, σ,Π) contains constants a ∈ �, σ ≥ 0, and a measure Π on
� \ {0} satisfying ∫

�
(1 ∧ x2)Π(dx) <∞. By definition, we know that

� |Xt −Xs|p = � |Xt−s|p, (6.18)

and it is further known that the latter moment is finite if and only if

∫
(|x|≥1)

|x|pΠ(dx) <∞. (6.19)

Furthermore, by the Lévy-Ito decomposition, X can be written as the sum of independent Lévy
processes

X = X(1) +X(2) +X(3), (6.20)

where X(3) is a Brownian motion with drift, X(2) is a Compound Poisson process, and X(1) is a
Lévy process with bounded jumps and without Brownian component.

Firstly, we will analyze the mean pathwise regularity of these three types of Lévy
processes to combine these results with lower bounds for the asymptotical quantization error.

(1) Mean Pathwise Regularity of the 3 Components of the Lévy-Ito Decomposition:

(i) According to an extendedMillar’s Lemma [17, Lemma 5], we have, for all Lévy
processes with bounded jumps and without Brownian component, that there
is for every p ≥ 2 a constant C < ∞ such that for every t ∈ [0, 1]

� |Xt|p ≤ Ct = C
(
t1/p

)p
. (6.21)

Combining (6.18) and (6.21), we can choose ρ in (5.2) as ρ1,p(x) = x1/p . For
p ∈ [1, 2)we have by using (6.21) with p = 2

� |Xt|p ≤
(
� |Xt|2

)p/2
≤ (Ct)p/2 =

(
C1/2t1/2

)p
, (6.22)

and thus we can choose ρ1,p(x) = Cx1/2. Combining these facts, we get
ρ1,p(x) = Cx1/2∨p for p ≥ 1.

(ii) We consider the Compound Poisson process

Xt =
Kt∑
k=1

Zk, (6.23)
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where K denotes a standard Poisson process with intensity λ = 1 and (Uk)k∈�
is an i.i.d sequence of random variables with ‖Z1‖Lp(�) < ∞. Then, one shows
that

�

∣∣∣∣∣
Kt∑
k=1

Zk

∣∣∣∣∣
p

≤ t‖Z1‖pLp(�) exp(−t)
∞∑
k=1

tk−1kp

k!
≤ C

(
t1/p

)p
, (6.24)

so that (5.2) is satisfied with φ2,p(x) = x1/p .
(iii) We consider a Brownian motion with drift. Using Examples 6.1 (i) and

Lemma 2.1 we can choose ρ in (5.2) as ρ3,p(x) = ρ3(x) = x1/2 for all p ≥ 1.

(2) Lévy Processes with Nonvanishing Brownian Component
Let X be a Lévy process with non vanishing Brownian component, which means
that σ in the characteristic triple satisfies σ > 0. in [17, Proposition 4] for r, p ≥ 1, it
holds that

(
log(n)

)−1/2 ≈ Cen,r(W,Lp
)
� en,r

(
X, Lp

)
, n −→ ∞ (6.25)

for some constant C ∈ (0,∞), andW denotes a Brownian motion. We consider the
Lévy-Ito decomposition X = X(1) +X(2) +X(3) and assume that for X(2)

t =
∑Kt

k=1Zkit
holds that ‖Z1‖Lp∨r (�) < ∞. Therefore, we receive the mean pathwise regularity for
X, all p, r ≥ 1, and some constant C < ∞

ρp(x) := Cx1/2∨r∨p. (6.26)

Thus, we can apply Theorem 5.1 with a = 1/2 ∨ p ∨ r and b = 1/2.

(3) Compound Poisson Processes
For a Compound Poisson process X we know that the rate for the asymptotic
quantization error under suitable assumptions is given by

en,r
(
X, Lp

) ≈ exp
(
−κ

√
log(n) log

(
log(n)

))
, n −→ ∞; (6.27)

see [16, Theorems 13, 14] and [17, Proposition 3] for a constant κ ∈ (0,∞). Thus,
the sequence (m(n))n∈� has to grow faster than in the examples above. To fulfill

∥∥∥‖X − Vm(X)‖Lp([0,1])
∥∥∥
Lr (�)

= o
(
exp

(
−κ

√
log(n) log

(
log(n)

)))
, (6.28)

as n → ∞ (see the proof of Theorem 5.1), we need to choose m(n) = (p ∨
r) exp(κ

√
log(n) log(log(n))(1 + ε))� for an arbitrary ε > 0.

(4) α-stable Lévy Processes with α ∈ (0, 2)
These are Lévy processes satisfying the self-similarity property

Xt
d= t1/αX1, (6.29)
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and furthermore

� |X1|α = ∞, sup
r

{
� |X1|r <∞}

= α. (6.30)

Thus, we can choose ρ(x) = Cx1/α for any p ≥ 1 and constants Cp < ∞. The
asymptotics of the quantization error for X is given by

en,r
(
X, Lp

) ≈ log (n)−1/α, n −→ ∞ (6.31)

for r, p ≥ 1 [14], such that we meet the requirements of Theorem 5.1 by setting
a = b = α.

7. Numerical Illustrations

In this section, we want to highlight the steps needed for a numerical implementation of our
approach and also give some illustrating results. For this purpose, it is useful to regard an n-
quantizer αn as an element of En (again denoted by αn) instead of being a subset of E. Then,
r-optimality of an n-quantizer αn for the random variable X in the separable Banach space E
reads

αn = arg min
α=(a1,...,an)∈En

DX
n,r(α), DX

n,r(α) := � min
1≤i≤n

‖X − ai‖r , (7.1)

with DX
n,r(α) also called distortion function for X. The differentiability of the distortion

function was treated in [6] for finite-dimensional Banach spaces (what is sufficient for our
purpose) and later in [33] for the general case.

Proposition 7.1 (see [6, Lemma 4.10]). Assume that the norm ‖ · ‖ of �d is smooth. Let r > 1, and
assume that any Voronoi diagram {Vai(α), ai ∈ α, 1 ≤ i ≤ n} with Vai(α) := {x ∈ �

d : ‖x − ai‖ =
mina∈α‖x−a‖} satisfies �X(Vai(α)∩Vaj (α)) = 0 for i /= j. Then, the distortion function is differentiable
at every admissible n-tuple α = (a1, . . . , an) (i.e., ai /=aj for i /= j) with

∇DX
n,r(α) = r�

(
χCai

(α)\{ai}(X)‖X − ai‖r−1∇‖·‖(X − ai)
)
∈

(
�
d
)n
, (7.2)

where {Cai(α) : 1 ≤ i ≤ n} denotes any Voronoi partition induced by α = {a1, . . . , an}.

Remark 7.2. When r = 1, the above result extends to admissible n-tuples with
�
X({a1, . . . , an}) = 0. Furthermore, if the norm is just smooth on a set A ∈ B(E) with �X(A) =

1, then the result still holds true. This is, for example, the case for (E, ‖ · ‖) = (�d , ‖ · ‖∞) and
random variablesX with �X(H) = 0 for all hyperplanesH , which includes the case of normal
distributed random variables.
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Classic optimization theories now yield that any local minimum is contained in the
set of stationary points. So let n ∈ �, m = m(n) ∈ �, r ≥ 1, X, Vm, and φm be given. The
procedure looks as follows.

Step 1. Calculation of the Distribution of the �m -Valued Random Variable ζ := φm(Vm(X)). This
step strongly depends on the shape of the random variable X and the operators Vm.

Being in the setting of Section 3.1 one starts with an orthonormal system (hi)i∈� in H
providing

φm(Vm(X)) = φm

(
Vm

( ∞∑
i=1

hi〈hi, X〉
))

= φm

(
m∑
i=1

hi〈hi, X〉
))

=
m∑
i=1

ei〈hi, X〉, (7.3)

where (ei)1≤i≤m denote the unit vectors in �
m . Thus, the covariance matrix of the random

variable ζ admits the representation

�ζζ⊥ =
(
�〈hi, X〉〈hj, X〉)

1≤i,j,≤m =
〈
CX(hi), hj

〉
1≤i,j,≤m, (7.4)

with CX being the covariance operator of X.
Similarly, we get for Gaussian random variables in the framework of Section 3.2

�ζζ⊥ =

(√
λ
(m)
i

√
λ
(m)
j

)
1≤i,j,≤m

, (7.5)

in the setting of Section 4

�ζζ⊥ =
(
�X

t
(m)
i
X
t
(m)
j

)
1≤i,j,≤m

=
(
δti

(
CX

(
δtj

)))
1≤i,j,≤m

, (7.6)

and in the setting of Section 5

�ζζ⊥ =
(
m1−2/pf (m)

j

(
CX

(
f
(m)
i

)))
1≤i,j,≤m

, (7.7)

with f
(m)
j associated with

∫
[0,1] ·f

(m)
j (s)ds. If one considers in the latter framework a non-

Brownian Lévy process, for example, and a compound Poisson process (we use the notations
as in Examples 6.2 (1) (ii)), the simulation of the gradient leads to the problem of simulating

∫ ti−1

ti

Kt∑
j=1

Zkdt, (7.8)

which is still possible.
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Step 2. Use a (stochastic) optimization algorithm to solve the stationarity equation

∇Dζ
n,r(α) = 0 ∈ �m, (7.9)

for ζ = φm(Vm(X)). For this purpose, the computability of the gradient (7.2) is of enormous
importance. One may either apply a deterministic gradient-based optimization algorithm
(e.g., BFGS) combined with a (Quasi) Monte-Carlo approximation for the gradient, such as
the one used in [20], or use a stochastic gradient algorithm, which is in the Hilbert space
setting also known as CLVQ (competitive learning vector quantization) algorithm (see, e.g.,
[19] for more details). In both cases, the random variable �ζ needs to be simulated, which is
the case for the above described examples.

Step 3. Reconstruct the quantizer β = (b1, . . . , bn) for the random variable X by setting

bi := φ−1
m (ai) ∈ Fm ⊂ E, (7.10)

for 1 ≤ i ≤ nwith α = (a1, . . . , an) being some solution of the stationarity (7.9).

Illustration

For illustration purposes, we will concentrate on the case described in Section 3.1 for r = 2.
Examples for quantizers as constructed in Section 4 can be found in [20]. The quantizers
shown in the sequel were calculated numerically, by using the widely used CLVQ-algorithm
as described in [19]. To achieve a better accuracy, we finally performed a few steps of a
gradient algorithm by approximating the gradient with a Monte Carlo simulation.Let X(H)

be a fractional Brownian motion with Hurst parameterH . We used the admissible sequence
as described in [28]:

X
(H)
t

d=
∞∑
n=1

√
2cH

|J1−H(xn)|
sin(xnt)
x1+Hn

ζ1n +
∞∑
n=1

√
2cH∣∣J−H(
yn

)∣∣
1 − cos

(
ynt

)
y1+H
n

ζ2n, (7.11)

where cH is given as

c2H :=
sin(πH)Γ(1 + 2H)

π
, (7.12)

J1−H and J−H are Bessel functions with corresponding parameters, and xn and yn are the
ordered roots of the Bessel functions with parameters −H and 1 − H . After ordering the
elements of the two parts of the expansion in an alternating manner and applying Gram-
Schmidt’s procedure for orthogonalization to construct a rate optimal ONS, we used the
method as described in Section 3.1. We show the results we obtained for n = 10, m = 4
and the Hurst parameters H = 0.3, 0.5, and 0.7 (Figures 1, 2, and 3). To show the effects of
changing parameters, we also present the quantizers obtained after increasing the size of the
containing subspace (m = 8) (Figures 4, 5, and 6) and in addition the effect of increasing the
quantizer size (n = 30) (Figures 7, 8, and 9). Since X(H) is forH = 0.5 an ordinary Brownian
motion, one can compare the results with the results obtained for the Brownian motion by
using the Karhunen-Loève expansion (see, e.g., [18]).
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Figure 1: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.3 in a 4-
dimensional subspace.
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Figure 2: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.5 in a 4-
dimensional subspace.

0 0.2 0.4 0.6 0.8 1

−2
−1.5
−1

−0.5
0

0.5

1

1.5

2

−2.5

2.5

Figure 3: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.7 in a 4-
dimensional subspace.
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Figure 4: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.3 in an 8-
dimensional subspace.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.5 in an 8-
dimensional subspace.
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Figure 6: The 10-quantizer for the fractional Brownian motion with Hurst parameter H = 0.7 in an 8-
dimensional subspace.
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Figure 7: The 30-quantizer for the fractional Brownian motion with Hurst parameter H = 0.3 in an 8-
dimensional subspace.
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Figure 8: The 30-quantizer for the fractional Brownian motion with Hurst parameter H = 0.5 in an 8-
dimensional subspace.
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Figure 9: The 30-quantizer for the fractional Brownian motion with Hurst parameter H = 0.7 in an 8-
dimensional subspace.
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